
Selection Scan: Bayenv2
Environmental Correlation Analysis

PBIO381



Contents

BAYENV2 Model
Null Model - Neutral Population Structure
Standardized Allele Frequencies 
XTX, a FST analog 

Data
Genome-Wide SNPs (balsam poplar)
Environmental: Lat, Long, Elev, Complex bioclim variables

Analysis
Estimate Covariance matrix of neutral population structure
Test SNP x Environment correlation as a test of selection

Draw inferences from results



Bayenv2

Does not assume that populations are evolutionarily independent

Estimates a null model of the covariance in allele frequencies between 
subpopulations (i.e. neutral population structure)

Accounts for this covariance when inferring significant correlations 
between gene frequencies and the environment



Bayenv2: 
The advent of genome-wide data sets with individuals

from many populations, across a wide geographic range
(e.g., Nordborg et al. 2005; Jakobsson et al. 2008; Li
et al. 2008; Auton et al. 2009), allows investigators to
obtain a systematic view of the processes shaping local
adaptation and to gain valuable insights into the genetic
and ecological basis of adaptation and speciation. It can
also provide support for adaptive explanations for
phenotypic variation, for example, suggesting an impact
of selection on variation that is linked to human meta-
bolic diseases (Thompson et al. 2004; Young et al. 2005;
Hancock et al. 2008, 2010; Pickrell et al. 2009).

Some of the earliest tests of selection on genetic
markers were based on identifying loci that showed
extreme allele frequency differences among popula-
tions (Cavalli-Sforza 1966; Lewontin and Krakauer
1973), using statistics such as FST, and there are now a
range of methods predicated on this idea (e.g., Beaumont
and Balding 2004; Foll and Gaggiotti 2008). Our goal
here differs, as we seek to identify loci where the allele
frequencies show unusually strong correlations with
one or more environmental variables. Such loci may be
under selection driven by those environmental factors
or correlated selection pressures. However, this goal
is complicated by the fact that allele frequencies are
typically correlated among closely related popula-
tions; since such populations tend to be geographically
proximate they often share environmental variables
(see Novembre and Di Rienzo 2009 for a recent dis-
cussion). This means that neighboring populations
can rarely be treated as independent observations.
Thus, a naive test of correlation between population
frequency and an environmental variable will often
have a high false positive rate. This situation is some-
what analogous to the reduced number of indepen-
dent contrasts when comparing traits across species
due to the shared phylogeny (Felsenstein 1985). The
nonindependence of populations is also known to
be an issue when using FST as a summary statistic to
identify selected loci (Robertson 1975; Excoffier
et al. 2009).

To illustrate the problem, Figure 1 shows the allele
frequencies of a SNP in a series of 52 human populations,
as a function of the distance of each population from the
equator (Figure 1 is redrawn from a similar plot in
Thompson et al. 2004). The SNP is AGT M235T and the
allele that increases in frequency with latitude is known to
reduce sodium retention (Lifton et al. 1993), which may
have been selectively favored in cooler northern climes.
However, as is apparent in Figure 1, populations cluster
by broad geographic region for both allele frequency and
distance from the equator. Thus, the correlation between
allele frequency and environmental variable is clearly
supported by far fewer independent observations than
the 52 points plotted in Figure 1. Moreover, it is not clear
how much of the variation in allele frequency in Figure 1
is due to sampling error in some of the smaller samples

or genetic drift. For example, are the low allele frequen-
cies in Oceania—which support an environmental
correlation—simply due to sampling error or genetic
drift?

In this article, we develop a model to overcome these
difficulties by accounting for differences in sample sizes
and for the null correlation of allele frequencies across
populations when testing for correlation between an
environmental variable and allele frequencies. To do
this, we use a set of control loci to estimate a null model
of how allele frequencies covary across populations. We
can then test whether the correlation seen between the
allele frequencies at a marker of interest and an
environmental variable is greater than expected given
this null model. We concentrate on markers such as
SNPs that are codominant and usually biallelic, but we
note in the discussion how the model can be extended
to other types of markers. The method developed here
can be applied to continuous or discrete environmental
variables. We demonstrate the method by applying it to
genome-wide SNP data from humans. Elsewhere we
have applied this method to human genome-wide SNP
data, for a range of environmental and ecological
variables (Hancock et al. 2008, 2010).

METHODS

We develop a model for the joint allele frequencies
across populations. One way to do so would be to use a
fully explicit model of demographic history, but such

Figure 1.—The distance from the equator for each of 52
human populations, plotted against sample allele frequencies
for the SNP AGT M235T in each population. The points are
colored according to the geographic region each popula-
tion belongs to, following region definitions of Rosenberg
et al. (2002). The data were generated using HGDP samples
by Thompson et al. (2004) and are replotted on the basis
of a figure in that article.
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Bayenv2: Covariance of Gene Frequencies

ulations under nonequilibrium models of history is
challenging and unappealing, as it requires the arbitrary
choice of many parameters. Instead we took an empir-
ical approach and altered the sample frequency of the
SNPs in the Conrad et al. (2006) HGDP panel by adding
a linear effect of the environment variable. If the
current sample frequency of an allele in population k
is Xk¼ nk/(nk 1 mk), then our new frequency is X 9k ¼
Xk1bYk, where Yk is the environmental variable in the
kth population (we rescaled Y to have mean zero and
variance 1). We converted these to sample frequencies
by rounding nkX 9k to the nearest integer n9

k ; if n9
k is

negative or exceeds the sample size (nk1mk), then n9
k is

set to zero or nk 1 mk, respectively. Informally, this linear
shift may be thought of as modeling strong selection
that acted recently on the frequencies of the allele
across populations. We conducted these power simu-
lations for a range of b.

We then calculated the Bayes factor to assess support
for a correlation between Y and the modified SNP
frequencies. For comparison, we also calculated the
power of a number of other test statistics aimed at
detecting the correlation between the environmental
variable and the sample allele frequencies: Spearman’s
rank correlation r, the P-value from a linear regression
model, and the P-value in a linear model obtained after
first regressing out the first three principal components
of the genetic data. We note that none of these three

alternative methods offers a well-calibrated statistic; i.e.,
the P-values were not uniform under the null model
(i.e., b ¼ 0). Therefore, for these alternative methods
and our Bayes factors we used the empirical distribution
of a test statistic to correctly set the cutoff threshold for
significance. To do this, we calculate the test statistic for
all SNPs, applying no linear effect of the environmental
variable (i.e., b ¼ 0), and create an empirical distribu-
tion for each of these test statistics. We then find the 5%
cutoff for this empirical distribution and any test statistic
lower than this is declared significant at the 5% level. To
explore the power of the various methods to detect an
environmental correlation, we chose a geographic vari-
able, i.e., latitude, and a climate variable, i.e., summer
precipitation. Latitude was chosen because it has been
used in a number of previous studies (e.g., Beckman
et al. 1994; Thompson et al. 2004; Young et al. 2005;
Hancock et al. 2008) and summer precipitation was
chosen as an example where all methods should have
good power because summer precipitation is relatively
uncorrelated with genetic patterns (it has only mildly
significant correlations with the first four principal
components of the genetic data). In Figure 3, we show
our power to detect a latitudinal effect on population
allele frequency. As can be seen, the methods that
account for the genetic structure of the populations
outperform those that do not, and our method is the
most powerful.

Figure 2.—(A) A single draw from the posterior of the covariance matrix estimated for the HGDP SNPs of Conrad et al. (2006).
(B) The correlation matrix calculated from the covariance matrix shown in A. The matrices are displayed as heat maps with lighter
colors corresponding to higher values. The rows and columns of these matrices have been arranged by broad geographic label.
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Are Rear-Edge Populations a Concern for Climate Mitigation? Harnessing 
Genome Scans for Understanding Climate Adaptation in Range-Wide 

Populations of a Widespread Boreal Tree Populus balsamifera 

Vikram E. Chhatre, Karl C. Fetter, Matthew C. Fitzpatrick, Stephen R. Keller



Ecological genomics of climate adaptation in trees

How did climates of the past 
shape standing genetic variation?

P. balsamifera



Populus balsamifera

One of the most 
widely distributed 
tree species in North 
America

Occupies areas well 
above continental 
tree line

Northernmost 
populations may be 
very sensitive to 
climate change

Range map (Little)



Conservation of  adaptive genetic  
variation at the rear edge

We need population samples from the rear edge to understand 
adaptation to warmer climate in the standing variation

Future species distribution predictionCurrent distribution of P. balsamifera



Ecological genomics of  climate adaptation 
Bayenv2 Data Set

42 Populations, 336 Trees, 107K SNPs
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Objectives

Estimate a null model of neutral 
population structure

Can we detect local adaptation 
manifest as gene+environment 
correlations along climatic and/or 
geographical gradients?



Methods: population genomics
GBS

(Genotyping by Sequencing)

Environment 
(Bioclim)

Phenotypes
(Common garden)

336 Trees
42 pops

~48 plex data
~107K SNPs

Population Genomics
GW

AS

Quantitative Genetics



GBS Data Filtering

1.1 million
SNPs

107K
SNPs

48 Plex Sequencing for 336 Trees
Illumina Platform - Tassel GBS Pipeline

Missing data < 20%

HWE Het Excess

Genotype Quality > 95

Depth > 5



ENVIRONMENTAL DATA

Latitude
Longitude 
Elevation



ENVIRONMENTAL DATA

Environmental Variables may be highly correlated!

SOLUTION?

Principal Component Analysis



Bayenv2 File Format

Genetic Data
Population Allele Counts

Why use allele counts when 
we are interested in frequencies?

Environmental Data
Standardized

i.e. Subtract the Mean & Divide by STDEV



Our Timeline

Monday, November 2
Start estimating COVARIANCE matrix 

Wednesday, November 4
Visualize & Understand COVARIANCE matrix

Begin Environmental Correlation Analysis

Monday, November 9
Understand Program Output

Determine significance using Bayes Factors
Spearman’s rho from std. alle. freq.

How could you use XTX, the population differentiation estimator


